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Finite-Difference Approximations 
to Singular Sturm-Liouville Eigenvalue Problems 

By G. W. Reddien 

Abstract. A modification of the central-difference method is given which greatly 
improves the convergence when applied to a certain class of singular eigenvalue 

problems, including the Klein-Gordon equation. The singularity given special treat- 

ment is at the finite end. 

1. Introduction. A common technique for approximating the discrete eigenvalues 
of Sturm-Liouville eigenvalue problems of the type 

(1) - d2y/dx2 + q(x)y(x) = Xy(x), 0 < x < 0, 

with y(O) = 0 and y(x) )- 0 as x - oo, is to replace infinity by some suitably large 
number b > 0 and then treat the problem over the interval [0, b] with the added 
boundary condition y(b) = 0 by using either the central-difference or Numerov finite- 
difference methods. A discussion of various implementations and applications of these 
methods can be found in, for example, Cooley [1] and Keller [4]. The purpose of 
this paper is to give a new finite-difference method for a class of problems with a 
singularity at the origin that includes the Klein-Gordon equation. We will treat the 
infinite interval as described above. 

In dimensionless form, the Klein-Gordon equation may be written as 

(2) - d2y/dx2 - (2/x + a2/x2)y(x) = Xy(x). 

The eigenfunction corresponding to the smallest eigenvalue of (2) behaves like xp near 
zero where 3 satisfies .5 < 3 < 1 for 0 < a < .5. It is this type of singularity for which 
we will develop a finite-difference formula. For a discussion of the Klein-Gordon equa- 
tion and more general singular problems, see Frank, Land and Spector [3]. A general- 
ization of equation (2) can be described as follows. Let q(x) be real-valued and in 

C2(0, oo), i.e. two continuous derivatives, with q(x) = x-2,=0qxm on 0 <x < 
a + 6 for some a, 6 > 0 and qo > - 1/4. Let L be the linear operator Ly = - y" + qy 

defined in the Hilbert space L2(0, oo) with domain D = {y: y E C2(0, 00), y and Ly E 

L2(0, 00)}. Let p = 1/2 + (qo + 1/4)1/2. For the case qo < 3/4 we add boundary 

condition limx0 (pxP -ly - xPy') = 0 to D. The eigenvalue problem is now to find 
X real and y in D so that Ly = Xy. A Frobenius expansion of such an eigenfunction 

y on (0, a + 6) shows that y(x) = a1xP + a2xP+ 1 + a3xP+2 + * . Thus, we 

obtain for p not an integer singularities at the origin similar to the Klein-Gordon equa- 
tion. We additionally assume q behaves at infinity so that such eigenfunctions vanish 
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at infinity and have four bounded derivatives on [a, 00). This would be the case, for 
example, if we assumed q(x) = x-1 EM=0qmx-m for all x sufficiently large. In 
Section 2 we define a finite-difference method to approximate X when Ly = Xy and y 
behaves as described. In Section 3 a numerical example is given. 

2. Finite-Difference Method. Let /n: ? = X0 < Xi < * < Xn = a < ... < 
XN < XN+ 1 be a partition of (0, xN+ 1) with xi+ 1 - xi = a/n =h for 0 < i S N. Our 
difference method is a three-point scheme, i.e. we define the difference operator Lh 

so that Lhy xi = ?aiyi-1 +?aiyi + yiyi+ 1, where y1 = y(xi). The development we gve 
is an adaptation of a technique used on the Bessel equation by Dershem [2]. Some 
essential modifications are required here in the analysis near the origin and in determin- 
ing an error bound. 

For a technical reason to be made clear later, we will consider cases on p = 1/2 
+ (q0 + 1/4)1/2. If p < 2, choose ai, fi and yi so that for i = 2, . ,n - 1, 
(Lhy - Ly)1Xi = 0 for all functions of the form y(x) = alxp + a2xP + + a3xP+2. 

One finds after solving the resulting three linear equations that 

i (l - 1) *h2 * - +P) 

=i-l *(2 - ( 2 + 2)+ q(xi), 

and 
(iP I 

'Y = (i). - . (- I -P). 

If 2 < p < 3, define p = p - 1 and choose oi,fi and 'yi so that for i =2, . . ., n -1, 

(Lhy - Ly)1xi = 0 for all functions of the form y(x) = alxp + a2xP+l + a3xP+2. 
Redefining p = p, we obtain the same formulas as in (3). For 3 < p < 4, define 
p = p - 2; and proceed as above. For p > 4 or an integer, the eigenfunctions are 
smooth so that the usual central-difference formula is satisfactory. In the remainder 
of this section, we assume p < 4 is not an integer. For i = n, . . . , N in all cases, 
the central-difference formula will be used, i.e. axi = - 1/h2, f3i = 2/h2 + q(xi) and 

zi = - 1/h2. Note that as i becomes large the coefficients in (3) approach the central- 
difference coefficients. For i = 1, we set a1 = 0 and choose ,1 and yj so that 
(Lhy - Ly)Ih = 0 for all functions of the form y(x) = a1(xP + qIxP+ 1 /2p) + 
a2xp+2 with p = 1/2 + (1/4 + q0)1/2 in all cases. The solution of the resulting two 
linear equations is 

- (4p + 2)/h2 - (p + 2)(p + I)q1/2ph + (p + I)q1/2h 
= 3-2P + h2Pq1 /p 

and 

1? = - (p + 2)(p + 1)/h2 + q(h) - 2P+2,y1. 

The difference method is now the following. The eigenvalues of the matrix Ah 
= aii] NNXN with aii = 3i, ai,11 = ai, ai,i 1 = yi and ai1 = 0 otherwise are computed 
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and taken as approximations to the eigenvalues of (1). In order to obtain an estimate 
for the error made in these approximations, we first obtain an estimate for the trunca- 
tion error. 

LEMMA. 

0(h'+P), i = 1, 
(Lhy - Ly)i = xi 0(h 2), i > 2. 

Proof. The case i > n - 1 is standard [4]. For the case 2 < i < n - 1, let 
v(x) = x-Py(x) with p redefined as in the cases treated earlier. Then as v is in 
C4 [0, a], use Taylor's theorem to expand v(x) about xi obtaining v(x) = v.(x - xi) + 

Vi- x )2/2 + Vu(x - x1)3/6 ? fxi(x - s)3v(4)(s)/6ds. Lh - L applied to 

xP(vi + v'. (x - xi) + v'(x - x1)2/2) at xi gives zero by construction. L applied to 
v7(x - xi)3xp/6 + f .(x - s)3xpv(4 )(s)/6 ds at xi also gives zero. Now 
Lh(xpfx (x - S)3v(4)(s)ds)jx. 0(h2) since loil, 1j3il = 0(h-2) and 

jXPfX(x - s)3v(4)(s)ds| < aP h4 max Iv(4)(s)1 
Xi OSs a 

Direct substitution shows that 

iLh(xPv'(x - xi)3/6)1 1 = (ih)P-h21uVI" pIP3 ? aP-h2Iu7.IpI3. 

Since y = xPv, this gives the result for i = 2, . . , n - 1. For the case i = 1, we 

observe from the Frobenius expansion of the eigenfunctions that 

y(x) = al(xP + q,xP+'12p) + a2XP+2 + a3xP+3 ? .. 

Using the fact that (Lhy - Ly)Ih = 0 for the first two terms of this expansion for y, 
direct substitution leads to (Lhy - Ly)Jh = 0(h' +P), completing the proof. 

We observe that Ah is not symmetric. However, define the N x N diagonal 
matrix Dh = [dd11 for h sufficiently small by dl1 = 1, d1j = (a111/ajj1)1/2 

dj_ jjl_, X =2, . . . , N, and dii = 0, otherwise. The cases treated earlier on p insure 
that (a1.1 ,1j/a1 1_1) is positive so that the square root can be taken. A direct computa- 
tion shows that D A hD-1 is a symmetric matrix. Using Lemma 3 of Dershem [21, 
one can deduce (or verify directly) the existence of positive constants C1 and C2 so 
that C1 6 d11 < C2 forj = 2, .. , N and all N. 

Now write Lhyx .-Xy- = r-,j = 1, ... N, where rj = 0(h2) for j = 2, ... 

N - 1; and r1 = 0(hl VP) where X and y are an eigenpair for (1). Since Ah is an 
N x N matrix, YN+ 1 has been set to zero, and thus, 

'rN (YN-1 - 2yN)/h2 -_ y(XN) = 0(h2 + h-2y(XN+ )). 

In matrix form, the truncation error formulas may be written as A,ny - XNV = -; and 
so, (DhAID-1 - XJ)D,7 = Dhi. We now proceed as in Keller [4] and deduce an 
error bound. The eigenvalues of Ah and DhAhDh1 are identical. Now if X is an 
eigenvalue of A,h, our approximation will be exact. Otherwise, denoting the eigenvalues 
of Ah by {A1} and using the Euclidean norm, we have 
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ILDhY 112 6 II(DhAhD' -X) 112 ILDhr 112 6 max IA-I 12, I[Dhy X')_1 11 - 
I[Dh-11 

{A.} maxrI2 A 
I lA I 

and 

(4) lfmnl IA1 - XI <?IDh 112/IDhy-112 
{Ai } 

Using the estimates on the entries of Dh, we have 
N n n 

IlDhy II = 1 j d12,yj dVy?2C2- nEy?a/n. 
j1 j= i 

Since y is in D, it follows that 

Z yja/n J f 2 dx as n ?- . 

Thus, for h = a/n sufficiently small, WlDhy-112 > kln'12 for some constant k, > 0. Now 

h 1 T1 C2( + T2 + ***+ 
2 

)1/2 h C(h2+2P + C Nh4 + N2 )1/2 IIDhII-12 ?_ C2I1I12 = C ?.T ?2 ..? k)" C2 (C3h22 4h 
for suitably chosen constants C3 > 0 and C4 > 0. Substituting these inequalities into 

(4), we then have 

m k2(C3h2+2P + C Nh4 + TN)1/2 
(5) {A1j } 

- k2(C3h3 + 2P + C4ah4N/n + hr2 1/2 

where k2 = C2/k1. Taking XN+ 1 sufficiently large so that the h-2y(xN+ 1) compon- 
ent of rN is negligible and keeping XN = aN/n fixed, we have from (5) that some 
eigenvalue of Ah approximates X with an error of 0(h2), since p > 1/2. Note that in 
the case of a finite interval, the method will be exactly 0(h2). 

3. Numerical Example. We applied the method to the problem - d2/dx2 - 

(1/4x2 + 1/x)y = Xy. This corresponds (with a scale change) to a = 1/2 in the case 
of the Klein-Gordon equation. The first eigenvalue can be verified to be X = - 1 with 

associated eigenfunction y(x) = x1/2 exp(- x); and in this case, p = 1/2. In the 
following table we give the error made in approximating X = - 1 and show the effect 
of varying the point x = a, h and xN. Also, the observed convergence rates are com- 

puted, i.e. assuming the error, e(h) behaves like e(h) = Chg, then : = 

ln(e(h1)/e(h2))/ln(h1 /h2). In the table . abc-d denotes .abc 1 l0-d. 

TABLE 

h a XN e(h) p h a XN e(h) ,B 

1/16 1 12 .985-3 - 1/16 4 12 .800-3 - 

1/32 1 12 .270-3 1.87 1/32 4 12 .222-3 1.85 

1/64 1 12 .7074 1.94 1/64 4 12 .5824 1.93 

1/128 1 12 .1814 1.97 1/128 4 12 .1494 1.97 

1/256 1 12 .457-5 1.98 1/256 4 12 .377-5 1.98 

1/384 1 12 .204-5 1.99 1/128 8 12 .1494 - 

1/128 2 12 .1514 - 1/256 8 12 .377-5 1.98 

1/128 1/2 12 .3864 1/128 8 20 .1494 
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The actual difference between the approximations with h = 1/128, a = 8 and 
XN = 12 and XN = 20 was .48 - 10-8. Application of the usual central-difference 
formula with h = 1/128 and XN = 12 gave an error of .401 as compared to an error 
of .149 -10-4 for the new method, and h = 1/128, a = 4, and XN = 12. This 
represents an improvement by a factor of approximately 27,000. The error was im- 
proved by increasing a from a = 1 to a = 4. However, one must trade this off against 
the need to take an increased number of pth-roots. Finally, for XN = 8, the results 
were affected by the magnitude of Y(XN+ ). With a = 1 and h = 1/128, an error of 
.247 - 10-4 was observed. 
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